

Netplan Documentation

	Reference
	YAML configuration

	API specification

	How-to guides
	Examples

	How to use DBus config API

	Tutorials
	Ubuntu 22.04 LTS

	Ubuntu 20.04 LTS

	Ubuntu 18.04 LTS

	Explanation
	Design

	FAQs

Project and community

	Reporting bugs: We want to know about the problems so we can fix them.

	Code changes: The code is open and we are open to accepting changes to
it. So, don’t worry about maintaining a new fork, and instead, let’s work
together.

If you want to get involved

	Visit the website at netplan.io [https://netplan.io]

	Join the community forum [https://askubuntu.com/questions/tagged/netplan]

	Report a bug on Launchpad [https://bugs.launchpad.net/netplan/+filebug]

	Contribute on GitHub [https://github.com/canonical/netplan]

Reference

Netplan’s configuration files use the
YAML [http://yaml.org/spec/1.1/current.html] format. All
/{lib,etc,run}/netplan/*.yaml are considered.

The top-level node in a netplan configuration file is a network: mapping
that contains version: 2 (the YAML currently being used by curtin, MaaS,
etc. is version 1), and then device definitions grouped by their type, such as
ethernets:, modems:, wifis:, or bridges:. These are the types
that our renderer can understand and are supported by our backends.

	YAML configuration

API specification

libnetplan is a component of the Netplan. project that contains the logic for
data parsing, validation and generation. It is build as a dynamic .so library
that can be used from different binaries (like Netplan’s generate,
netplan-dbus, the netplan apply/try/get/set/... CLI or via the corresponding
Python bindings or external applications like the NetworkManager, using the
Netplan backend).

	API reference [https://discourse.ubuntu.com/t/29106]
– C API and Python bindings for libnetplan

YAML configuration

Introduction

Distribution installers, cloud instantiation, image builds for particular
devices, or any other way to deploy an operating system put its desired
network configuration into YAML configuration file(s). During
early boot, the netplan “network renderer” runs which reads
/{lib,etc,run}/netplan/*.yaml and writes configuration to /run to hand
off control of devices to the specified networking daemon.

	Configured devices get handled by systemd-networkd by default,
unless explicitly marked as managed by a specific renderer (NetworkManager)

	Devices not covered by the network config do not get touched at all.

	Usable in initramfs (few dependencies and fast)

	No persistent generated config, only original YAML config

	Parser supports multiple config files to allow applications like libvirt or
lxd to package up expected network config (virbr0, lxdbr0), or to change
the global default policy to use NetworkManager for everything.

	Retains the flexibility to change backends/policy later or adjust to
removing NetworkManager, as generated configuration is ephemeral.

General structure

netplan’s configuration files use the
YAML [http://yaml.org/spec/1.1/current.html] format. All
/{lib,etc,run}/netplan/*.yaml are considered. Lexicographically later files
(regardless of in which directory they are) amend (new mapping keys) or
override (same mapping keys) previous ones. A file in /run/netplan
completely shadows a file with same name in /etc/netplan, and a file in
either of those directories shadows a file with the same name in /lib/netplan.

The top-level node in a netplan configuration file is a network: mapping
that contains version: 2 (the YAML currently being used by curtin, MaaS,
etc. is version 1), and then device definitions grouped by their type, such as
ethernets:, modems:, wifis:, or bridges:. These are the types that our
renderer can understand and are supported by our backends.

Each type block contains device definitions as a map where the keys (called
“configuration IDs”) are defined as below.

Device configuration IDs

The key names below the per-device-type definition maps (like ethernets:)
are called “ID”s. They must be unique throughout the entire set of
configuration files. Their primary purpose is to serve as anchor names for
composite devices, for example to enumerate the members of a bridge that is
currently being defined.

(Since 0.97) If an interface is defined with an ID in a configuration file; it
will be brought up by the applicable renderer. To not have netplan touch an
interface at all, it should be completely omitted from the netplan configuration
files.

There are two physically/structurally different classes of device definitions,
and the ID field has a different interpretation for each:

Physical devices

(Examples: ethernet, modem, wifi) These can dynamically come and go between
reboots and even during runtime (hot plugging). In the generic case, they
can be selected by match: rules on desired properties, such as name/name
pattern, MAC address, driver, or device paths. In general these will match
any number of devices (unless they refer to properties which are unique
such as the full path or MAC address), so without further knowledge about
the hardware these will always be considered as a group.

It is valid to specify no match rules at all, in which case the ID field is
simply the interface name to be matched. This is mostly useful if you want
to keep simple cases simple, and it’s how network device configuration has
been done for a long time.

If there are match: rules, then the ID field is a purely opaque name
which is only being used for references from definitions of compound
devices in the config.

Virtual devices

(Examples: veth, bridge, bond, vrf) These are fully under the control of the
config file(s) and the network stack. I. e. these devices are being created
instead of matched. Thus match: and set-name: are not applicable for
these, and the ID field is the name of the created virtual device.

Common properties for physical device types

Note: Some options will not work reliably for devices matched by name only
and rendered by networkd, due to interactions with device renaming in udev.
Match devices by MAC when setting options like: wakeonlan or *-offload.

	match (mapping)

This selects a subset of available physical devices by various hardware
properties. The following configuration will then apply to all matching
devices, as soon as they appear. All specified properties must match.

	name (scalar)

Current interface name. Globs are supported, and the primary use case for
matching on names, as selecting one fixed name can be more easily achieved
with having no match: at all and just using the ID (see above).
(NetworkManager: as of v1.14.0)

	macaddress (scalar)

Device’s 6-byte MAC address in the form “XX:XX:XX:XX:XX:XX” or 20 bytes
for InfiniBand devices (IPoIB). Globs are not allowed.

	driver (scalar or sequence of scalars) – sequence since 0.104

Kernel driver name, corresponding to the DRIVER udev property.
A sequence of globs is supported, any of which must match.
Matching on driver is only supported with networkd.

Examples:

	All cards on second PCI bus:

match:
 name: enp2*

	Fixed MAC address:

match:
 macaddress: 11:22:33:AA:BB:FF

	First card of driver ixgbe:

match:
 driver: ixgbe
 name: en*s0

	First card with a driver matching bcmgenet or smsc*:

match:
 driver: ["bcmgenet", "smsc*"]
 name: en*

	set-name (scalar)

When matching on unique properties such as path or MAC, or with additional
assumptions such as “there will only ever be one wifi device”, match rules
can be written so that they only match one device. Then this property can be
used to give that device a more specific/desirable/nicer name than the
default from udev’s ifnames. Any additional device that satisfies the match
rules will then fail to get renamed and keep the original kernel name (and
dmesg will show an error).

	wakeonlan (bool)

Enable wake on LAN. Off by default.

	emit-lldp (bool) – since 0.99

(networkd backend only) Whether to emit LLDP packets. Off by default.

	receive-checksum-offload (bool) – since 0.104

(networkd backend only) If set to true (false), the hardware offload for
checksumming of ingress network packets is enabled (disabled). When unset,
the kernel’s default will be used.

	transmit-checksum-offload (bool) – since 0.104

(networkd backend only) If set to true (false), the hardware offload for
checksumming of egress network packets is enabled (disabled). When unset,
the kernel’s default will be used.

	tcp-segmentation-offload (bool) – since 0.104

(networkd backend only) If set to true (false), the TCP Segmentation
Offload (TSO) is enabled (disabled). When unset, the kernel’s default will
be used.

	tcp6-segmentation-offload (bool) – since 0.104

(networkd backend only) If set to true (false), the TCP6 Segmentation
Offload (tx-tcp6-segmentation) is enabled (disabled). When unset, the
kernel’s default will be used.

	generic-segmentation-offload (bool) – since 0.104

(networkd backend only) If set to true (false), the Generic Segmentation
Offload (GSO) is enabled (disabled). When unset, the kernel’s default will
be used.

	generic-receive-offload (bool) – since 0.104

(networkd backend only) If set to true (false), the Generic Receive
Offload (GRO) is enabled (disabled). When unset, the kernel’s default will
be used.

	large-receive-offload (bool) – since 0.104

(networkd backend only) If set to true (false), the Large Receive Offload
(LRO) is enabled (disabled). When unset, the kernel’s default will
be used.

	openvswitch (mapping) – since 0.100

This provides additional configuration for the openvswitch network device.
If Open vSwitch is not available on the system, netplan treats the presence
of openvswitch configuration as an error.

Any supported network device that is declared with the openvswitch
mapping (or any bond/bridge that includes an interface with an openvswitch
configuration) will be created in openvswitch instead of the defined
renderer. In the case of a vlan definition declared the same way,
netplan will create a fake VLAN bridge in openvswitch with the requested
vlan properties.

	external-ids (mapping) – since 0.100

Passed-through directly to Open vSwitch

	other-config (mapping) – since 0.100

Passed-through directly to Open vSwitch

	lacp (scalar) – since 0.100

Valid for bond interfaces. Accepts active, passive or off (the
default).

	fail-mode (scalar) – since 0.100

Valid for bridge interfaces. Accepts secure or standalone (the
default).

	mcast-snooping (bool) – since 0.100

Valid for bridge interfaces. False by default.

	protocols (sequence of scalars) – since 0.100

Valid for bridge interfaces or the network section. List of protocols to
be used when negotiating a connection with the controller. Accepts
OpenFlow10, OpenFlow11, OpenFlow12, OpenFlow13, OpenFlow14,
OpenFlow15 and OpenFlow16.

	rstp (bool) – since 0.100

Valid for bridge interfaces. False by default.

	controller (mapping) – since 0.100

Valid for bridge interfaces. Specify an external OpenFlow controller.

	addresses (sequence of scalars)

Set the list of addresses to use for the controller targets. The
syntax of these addresses is as defined in ovs-vsctl(8). Example:
addresses: [tcp:127.0.0.1:6653, "ssl:[fe80::1234%eth0]:6653"]

	connection-mode (scalar)

Set the connection mode for the controller. Supported options are
in-band and out-of-band. The default is in-band.

	ports (sequence of sequence of scalars) – since 0.100

Open vSwitch patch ports. Each port is declared as a pair of names
which can be referenced as interfaces in dependent virtual devices
(bonds, bridges).

Example:

openvswitch:
 ports:
 - [patch0-1, patch1-0]

	ssl (mapping) – since 0.100

Valid for global openvswitch settings. Options for configuring SSL
server endpoint for the switch.

	ca-cert (scalar)

Path to a file containing the CA certificate to be used.

	certificate (scalar)

Path to a file containing the server certificate.

	private-key (scalar)

Path to a file containing the private key for the server.

Common properties for all device types

	renderer (scalar)

Use the given networking backend for this definition. Currently supported
are networkd and NetworkManager. This property can be specified globally
in network:, for a device type (in e. g. ethernets:) or
for a particular device definition. Default is networkd.

(Since 0.99) The renderer property has one additional acceptable value for
vlan objects (i. e. defined in vlans:): sriov. If a vlan is defined with
the sriov renderer for an SR-IOV Virtual Function interface, this causes
netplan to set up a hardware VLAN filter for it. There can be only one
defined per VF.

	dhcp4 (bool)

Enable DHCP for IPv4. Off by default.

	dhcp6 (bool)

Enable DHCP for IPv6. Off by default. This covers both stateless DHCP -
where the DHCP server supplies information like DNS nameservers but not the
IP address - and stateful DHCP, where the server provides both the address
and the other information.

If you are in an IPv6-only environment with completely stateless
auto-configuration (SLAAC with RDNSS), this option can be set to cause the
interface to be brought up. (Setting accept-ra alone is not sufficient.)
Auto-configuration will still honor the contents of the router
advertisement and only use DHCP if requested in the RA.

Note that rdnssd(8) is required to use RDNSS with networkd. No extra
software is required for NetworkManager.

	ipv6-mtu (scalar) – since 0.98

Set the IPv6 MTU (only supported with networkd backend). Note
that needing to set this is an unusual requirement.

Requires feature: ipv6-mtu

	ipv6-privacy (bool)

Enable IPv6 Privacy Extensions (RFC 4941) for the specified interface, and
prefer temporary addresses. Defaults to false - no privacy extensions. There
is currently no way to have a private address but prefer the public address.

	link-local (sequence of scalars)

Configure the link-local addresses to bring up. Valid options are ‘ipv4’
and ‘ipv6’, which respectively allow enabling IPv4 and IPv6 link local
addressing. If this field is not defined, the default is to enable only
IPv6 link-local addresses. If the field is defined but configured as an
empty set, IPv6 link-local addresses are disabled as well as IPv4 link-
local addresses.

This feature enables or disables link-local addresses for a protocol, but
the actual implementation differs per backend. On networkd, this directly
changes the behavior and may add an extra address on an interface. When
using the NetworkManager backend, enabling link-local has no effect if the
interface also has DHCP enabled.

Examples:

	Enable only IPv4 link-local: link-local: [ipv4]

	Enable all link-local addresses: link-local: [ipv4, ipv6]

	Disable all link-local addresses: link-local: []

	ignore-carrier (bool) – since 0.104

(networkd backend only) Allow the specified interface to be configured even
if it has no carrier.

	critical (bool)

Designate the connection as “critical to the system”, meaning that special
care will be taken by to not release the assigned IP when the daemon is
restarted. (not recognized by NetworkManager)

	dhcp-identifier (scalar)

(networkd backend only) Sets the source of DHCPv4 client identifier. If
mac is specified, the MAC address of the link is used. If this option is
omitted, or if duid is specified, networkd will generate an
RFC4361-compliant client identifier for the interface by combining the
link’s IAID and DUID.

	dhcp4-overrides (mapping)

(networkd backend only) Overrides default DHCP behavior; see the
DHCP Overrides section below.

	dhcp6-overrides (mapping)

(networkd backend only) Overrides default DHCP behavior; see the
DHCP Overrides section below.

	accept-ra (bool)

Accept Router Advertisement that would have the kernel configure IPv6 by
itself. When enabled, accept Router Advertisements. When disabled, do not
respond to Router Advertisements. If unset use the host kernel default
setting.

	addresses (sequence of scalars and mappings)

Add static addresses to the interface in addition to the ones received
through DHCP or RA. Each sequence entry is in CIDR notation, i. e. of the
form addr/prefixlen. addr is an IPv4 or IPv6 address as recognized
by inet_pton(3) and prefixlen the number of bits of the subnet.

For virtual devices (bridges, bonds, vlan) if there is no address
configured and DHCP is disabled, the interface may still be brought online,
but will not be addressable from the network.

In addition to the addresses themselves one can specify configuration
parameters as mappings. Current supported options are:

	lifetime (scalar) – since 0.100

Default: forever. This can be forever or 0 and corresponds
to the PreferredLifetime option in systemd-networkd’s Address
section. Currently supported on the networkd backend only.

	label (scalar) – since 0.100

An IP address label, equivalent to the ip address label
command. Currently supported on the networkd backend only.

Examples:

	Simple: addresses: [192.168.14.2/24, "2001:1::1/64"]

	Advanced:

ethernets:
 eth0:
 addresses:
 - "10.0.0.15/24":
 lifetime: 0
 label: "maas"
 - "2001:1::1/64"

	ipv6-address-generation (scalar) – since 0.99

Configure method for creating the address for use with RFC4862 IPv6
Stateless Address Auto-configuration (only supported with NetworkManager
backend). Possible values are eui64 or stable-privacy.

	ipv6-address-token (scalar) – since 0.100

Define an IPv6 address token for creating a static interface identifier for
IPv6 Stateless Address Auto-configuration. This is mutually exclusive with
ipv6-address-generation.

	gateway4, gateway6 (scalar)

Deprecated, see Default routes.
Set default gateway for IPv4/6, for manual address configuration. This
requires setting addresses too. Gateway IPs must be in a form
recognized by inet_pton(3). There should only be a single gateway
per IP address family set in your global config, to make it unambiguous.
If you need multiple default routes, please define them via
routing-policy.

Examples

	IPv4: gateway4: 172.16.0.1

	IPv6: gateway6: "2001:4::1"

	nameservers (mapping)

Set DNS servers and search domains, for manual address configuration. There
are two supported fields: addresses: is a list of IPv4 or IPv6 addresses
similar to gateway*, and search: is a list of search domains.

Example:

ethernets:
 id0:
 [...]
 nameservers:
 search: [lab, home]
 addresses: [8.8.8.8, "FEDC::1"]

	macaddress (scalar)

Set the device’s MAC address. The MAC address must be in the form
“XX:XX:XX:XX:XX:XX”.

Note: This will not work reliably for devices matched by name
only and rendered by networkd, due to interactions with device
renaming in udev. Match devices by MAC when setting MAC addresses.

Example:

ethernets:
 id0:
 match:
 macaddress: 52:54:00:6b:3c:58
 [...]
 macaddress: 52:54:00:6b:3c:59

	mtu (scalar)

Set the Maximum Transmission Unit for the interface. The default is 1500.
Valid values depend on your network interface.

Note: This will not work reliably for devices matched by name
only and rendered by networkd, due to interactions with device
renaming in udev. Match devices by MAC when setting MTU.

	optional (bool)

An optional device is not required for booting. Normally, networkd will
wait some time for device to become configured before proceeding with
booting. However, if a device is marked as optional, networkd will not wait
for it. This is only supported by networkd, and the default is false.

Example:

ethernets:
 eth7:
 # this is plugged into a test network that is often
 # down - don't wait for it to come up during boot.
 dhcp4: true
 optional: true

	optional-addresses (sequence of scalars)

Specify types of addresses that are not required for a device to be
considered online. This changes the behavior of backends at boot time to
avoid waiting for addresses that are marked optional, and thus consider
the interface as “usable” sooner. This does not disable these addresses,
which will be brought up anyway.

Example:

ethernets:
 eth7:
 dhcp4: true
 dhcp6: true
 optional-addresses: [ipv4-ll, dhcp6]

	activation-mode (scalar) – since 0.103

Allows specifying the management policy of the selected interface. By
default, netplan brings up any configured interface if possible. Using the
activation-mode setting users can override that behavior by either
specifying manual, to hand over control over the interface state to the
administrator or (for networkd backend only) off to force the link
in a down state at all times. Any interface with activation-mode
defined is implicitly considered optional.
Supported officially as of networkd v248+.

Example:

ethernets:
 eth1:
 # this interface will not be put into an UP state automatically
 dhcp4: true
 activation-mode: manual

	routes (sequence of mappings)

Configure static routing for the device; see the Routing section below.

	routing-policy (sequence of mappings)

Configure policy routing for the device; see the Routing section below.

	neigh-suppress (scalar) – since 0.105

Takes a boolean. Configures whether ARP and ND neighbor suppression is
enabled for this port. When unset, the kernel’s default will be used.

DHCP Overrides

Several DHCP behavior overrides are available. Most currently only have any
effect when using the networkd backend, with the exception of use-routes
and route-metric.

Overrides only have an effect if the corresponding dhcp4 or dhcp6 is
set to true.

If both dhcp4 and dhcp6 are true, the networkd backend requires
that dhcp4-overrides and dhcp6-overrides contain the same keys and
values. If the values do not match, an error will be shown and the network
configuration will not be applied.

When using the NetworkManager backend, different values may be specified for
dhcp4-overrides and dhcp6-overrides, and will be applied to the DHCP
client processes as specified in the netplan YAML.

	dhcp4-overrides, dhcp6-overrides (mapping)

The dhcp4-overrides and `dhcp6-override`` mappings override the
default DHCP behavior.

	use-dns (bool)

Default: true. When true, the DNS servers received from the
DHCP server will be used and take precedence over any statically
configured ones. Currently only has an effect on the networkd
backend.

	use-ntp (bool)

Default: true. When true, the NTP servers received from the
DHCP server will be used by systemd-timesyncd and take precedence
over any statically configured ones. Currently only has an effect on
the networkd backend.

	send-hostname (bool)

Default: true. When true, the machine’s hostname will be sent
to the DHCP server. Currently only has an effect on the networkd
backend.

	use-hostname (bool)

Default: true. When true, the hostname received from the DHCP
server will be set as the transient hostname of the system. Currently
only has an effect on the networkd backend.

	use-mtu (bool)

Default: true. When true, the MTU received from the DHCP
server will be set as the MTU of the network interface. When false,
the MTU advertised by the DHCP server will be ignored. Currently only
has an effect on the networkd backend.

	hostname (scalar)

Use this value for the hostname which is sent to the DHCP server,
instead of machine’s hostname. Currently only has an effect on the
networkd backend.

	use-routes (bool)

Default: true. When true, the routes received from the DHCP
server will be installed in the routing table normally. When set to
false, routes from the DHCP server will be ignored: in this case,
the user is responsible for adding static routes if necessary for
correct network operation. This allows users to avoid installing a
default gateway for interfaces configured via DHCP. Available for
both the networkd and NetworkManager backends.

	route-metric (scalar)

Use this value for default metric for automatically-added routes.
Use this to prioritize routes for devices by setting a lower metric
on a preferred interface. Available for both the networkd and
NetworkManager backends.

	use-domains (scalar) – since 0.98

Takes a boolean, or the special value “route”. When true, the domain
name received from the DHCP server will be used as DNS search domain
over this link, similar to the effect of the Domains= setting. If set
to “route”, the domain name received from the DHCP server will be
used for routing DNS queries only, but not for searching, similar to
the effect of the Domains= setting when the argument is prefixed with
“~”.

Requires feature: dhcp-use-domains

Routing

Complex routing is possible with netplan. Standard static routes as well
as policy routing using routing tables are supported via the networkd
backend.

These options are available for all types of interfaces.

Default routes

The most common need for routing concerns the definition of default routes to
reach the wider Internet. Those default routes can only defined once per IP
family and routing table. A typical example would look like the following:

eth0:
 [...]
 routes:
 - to: default # could be 0/0 or 0.0.0.0/0 optionally
 via: 10.0.0.1
 metric: 100
 on-link: true
 - to: default # could be ::/0 optionally
 via: cf02:de:ad:be:ef::2
eth1:
 [...]
 routes:
 - to: default
 via: 172.134.67.1
 metric: 100
 on-link: true
 # Not on the main routing table,
 # does not conflict with the eth0 default route
 table: 76

	routes (mapping)

The routes block defines standard static routes for an interface.
At least to must be specified. If type is local or nat a
default scope of host is assumed.
If type is unicast and no gateway (via) is given or type is
broadcast, multicast or anycast a default scope of link
is assumed. Otherwise, a global scope is the default setting.

For from, to, and via, both IPv4 and IPv6 addresses are
recognized, and must be in the form addr/prefixlen or addr.

	from (scalar)

Set a source IP address for traffic going through the route.
(NetworkManager: as of v1.8.0)

	to (scalar)

Destination address for the route.

	via (scalar)

Address to the gateway to use for this route.

	on-link (bool)

When set to “true”, specifies that the route is directly connected
to the interface.
(NetworkManager: as of v1.12.0 for IPv4 and v1.18.0 for IPv6)

	metric (scalar)

The relative priority of the route. Must be a positive integer value.

	type (scalar)

The type of route. Valid options are “unicast” (default), “anycast”,
“blackhole”, “broadcast”, “local”, “multicast”, “nat”, “prohibit”,
“throw”, “unreachable” or “xresolve”.

	scope (scalar)

The route scope, how wide-ranging it is to the network. Possible
values are “global”, “link”, or “host”.

	table (scalar)

The table number to use for the route. In some scenarios, it may be
useful to set routes in a separate routing table. It may also be used
to refer to routing policy rules which also accept a table
parameter. Allowed values are positive integers starting from 1.
Some values are already in use to refer to specific routing tables:
see /etc/iproute2/rt_tables.
(NetworkManager: as of v1.10.0)

	mtu (scalar) – since 0.101

The MTU to be used for the route, in bytes. Must be a positive integer
value.

	congestion-window (scalar) – since 0.102

The congestion window to be used for the route, represented by number
of segments. Must be a positive integer value.

	advertised-receive-window (scalar) – since 0.102

The receive window to be advertised for the route, represented by
number of segments. Must be a positive integer value.

	routing-policy (mapping)

The routing-policy block defines extra routing policy for a network,
where traffic may be handled specially based on the source IP, firewall
marking, etc.

For from, to, both IPv4 and IPv6 addresses are recognized, and
must be in the form addr/prefixlen or addr.

	from (scalar)

Set a source IP address to match traffic for this policy rule.

	to (scalar)

Match on traffic going to the specified destination.

	table (scalar)

The table number to match for the route. In some scenarios, it may be
useful to set routes in a separate routing table. It may also be used
to refer to routes which also accept a table parameter.
Allowed values are positive integers starting from 1.
Some values are already in use to refer to specific routing tables:
see /etc/iproute2/rt_tables.

	priority (scalar)

Specify a priority for the routing policy rule, to influence the order
in which routing rules are processed. A higher number means lower
priority: rules are processed in order by increasing priority number.

	mark (scalar)

Have this routing policy rule match on traffic that has been marked
by the iptables firewall with this value. Allowed values are positive
integers starting from 1.

	type-of-service (scalar)

Match this policy rule based on the type of service number applied to
the traffic.

Authentication

Netplan supports advanced authentication settings for ethernet and wifi
interfaces, as well as individual wifi networks, by means of the auth block.

	auth (mapping)

Specifies authentication settings for a device of type ethernets:, or
an access-points: entry on a wifis: device.

The auth block supports the following properties:

	key-management (scalar)

The supported key management modes are none (no key management);
psk (WPA with pre-shared key, common for home wifi); eap (WPA
with EAP, common for enterprise wifi); and 802.1x (used primarily
for wired Ethernet connections).

	password (scalar)

The password string for EAP, or the pre-shared key for WPA-PSK.

The following properties can be used if key-management is eap
or 802.1x:

	method (scalar)

The EAP method to use. The supported EAP methods are tls (TLS),
peap (Protected EAP), and ttls (Tunneled TLS).

	identity (scalar)

The identity to use for EAP.

	anonymous-identity (scalar)

The identity to pass over the unencrypted channel if the chosen EAP
method supports passing a different tunnelled identity.

	ca-certificate (scalar)

Path to a file with one or more trusted certificate authority (CA)
certificates.

	client-certificate (scalar)

Path to a file containing the certificate to be used by the client
during authentication.

	client-key (scalar)

Path to a file containing the private key corresponding to
client-certificate.

	client-key-password (scalar)

Password to use to decrypt the private key specified in
client-key if it is encrypted.

	phase2-auth (scalar) – since 0.99

Phase 2 authentication mechanism.

Properties for device type ethernets:

Ethernet device definitions, beyond common ones described above, also support
some additional properties that can be used for SR-IOV devices.

	link (scalar) – since 0.99

(SR-IOV devices only) The link property declares the device as a
Virtual Function of the selected Physical Function device, as identified
by the given netplan id.

Example:

ethernets:
 enp1: {...}
 enp1s16f1:
 link: enp1

	virtual-function-count (scalar) – since 0.99

(SR-IOV devices only) In certain special cases VFs might need to be
configured outside of netplan. For such configurations
virtual-function-count can be optionally used to set an explicit number of
Virtual Functions for the given Physical Function. If unset, the default is
to create only as many VFs as are defined in the netplan configuration. This
should be used for special cases only.

Requires feature: sriov

	embedded-switch-mode (scalar) – since 0.104

(SR-IOV devices only) Change the operational mode of the embedded switch
of a supported SmartNIC PCI device (e.g. Mellanox ConnectX-5). Possible
values are switchdev or legacy, if unspecified the vendor’s
default configuration is used.

Requires feature: eswitch-mode

	delay-virtual-functions-rebind (bool) – since 0.104

(SR-IOV devices only) Delay rebinding of SR-IOV virtual functions to its
driver after changing the embedded-switch-mode setting to a later stage.
Can be enabled when bonding/VF LAG is in use. Defaults to false.

Requires feature: eswitch-mode

	infiniband-mode (scalar) – since 0.105

(InfiniBand devices only) Change the operational mode of a IPoIB device.
Possible values are datagram or connected. If unspecified the
kernel’s default configuration is used.

Requires feature: infiniband

Properties for device type modems:

GSM/CDMA modem configuration is only supported for the NetworkManager
backend. systemd-networkd does not support modems.

Requires feature: modems

	apn (scalar) – since 0.99

Set the carrier APN (Access Point Name). This can be omitted if
auto-config is enabled.

	auto-config (bool) – since 0.99

Specify whether to try and auto-configure the modem by doing a lookup of
the carrier against the Mobile Broadband Provider database. This may not
work for all carriers.

	device-id (scalar) – since 0.99

Specify the device ID (as given by the WWAN management service) of the
modem to match. This can be found using mmcli.

	network-id (scalar) – since 0.99

Specify the Network ID (GSM LAI format). If this is specified, the device
will not roam networks.

	number (scalar) – since 0.99

The number to dial to establish the connection to the mobile broadband
network. (Deprecated for GSM)

	password (scalar) – since 0.99

Specify the password used to authenticate with the carrier network. This
can be omitted if auto-config is enabled.

	pin (scalar) – since 0.99

Specify the SIM PIN to allow it to operate if a PIN is set.

	sim-id (scalar) – since 0.99

Specify the SIM unique identifier (as given by the WWAN management service)
which this connection applies to. If given, the connection will apply to
any device also allowed by device-id which contains a SIM card matching
the given identifier.

	sim-operator-id (scalar) – since 0.99

Specify the MCC/MNC string (such as “310260” or “21601”) which identifies
the carrier that this connection should apply to. If given, the connection
will apply to any device also allowed by device-id and sim-id
which contains a SIM card provisioned by the given operator.

	username (scalar) – since 0.99

Specify the username used to authenticate with the carrier network. This
can be omitted if auto-config is enabled.

Properties for device type wifis:

Note that systemd-networkd does not natively support wifi, so you need
wpasupplicant installed if you let the networkd renderer handle wifi.

	access-points (mapping)

This provides pre-configured connections to NetworkManager. Note that
users can of course select other access points/SSIDs. The keys of the
mapping are the SSIDs, and the values are mappings with the following
supported properties:

	password (scalar)

Enable WPA2 authentication and set the passphrase for it. If neither
this nor an auth block are given, the network is assumed to be
open. The setting

password: "S3kr1t"

is equivalent to

auth:
 key-management: psk
 password: "S3kr1t"

	mode (scalar)

Possible access point modes are infrastructure (the default),
ap (create an access point to which other devices can connect),
and adhoc (peer to peer networks without a central access point).
ap is only supported with NetworkManager.

	bssid (scalar) – since 0.99

If specified, directs the device to only associate with the given
access point.

	band (scalar) – since 0.99

Possible bands are 5GHz (for 5GHz 802.11a) and 2.4GHz
(for 2.4GHz 802.11), do not restrict the 802.11 frequency band of the
network if unset (the default).

	channel (scalar) – since 0.99

Wireless channel to use for the Wi-Fi connection. Because channel
numbers overlap between bands, this property takes effect only if
the band property is also set.

	hidden (bool) – since 0.100

Set to true to change the SSID scan technique for connecting to
hidden WiFi networks. Note this may have slower performance compared
to false (the default) when connecting to publicly broadcast
SSIDs.

	wakeonwlan (sequence of scalars) – since 0.99

This enables WakeOnWLan on supported devices. Not all drivers support all
options. May be any combination of any, disconnect, magic_pkt,
gtk_rekey_failure, eap_identity_req, four_way_handshake,
rfkill_release or tcp (NetworkManager only). Or the exclusive
default flag (the default).

	regulatory-domain (scalar) – since 0.105

This can be used to define the radio’s regulatory domain, to make use of
additional WiFi channels outside the “world domain”. Takes an ISO /
IEC 3166 country code (like GB) or 00 to reset to the “world domain”.
See wireless-regdb [https://git.kernel.org/pub/scm/linux/kernel/git/sforshee/wireless-regdb.git/tree/db.txt]
for available values.

Requires dependency: iw, if it is to be used outside the networkd
(wpa_supplicant) backend.

Properties for device type bridges:

	interfaces (sequence of scalars)

All devices matching this ID list will be added to the bridge. This may
be an empty list, in which case the bridge will be brought online with
no member interfaces.

Example:

ethernets:
 switchports:
 match: {name: "enp2*"}
[...]
bridges:
 br0:
 interfaces: [switchports]

	parameters (mapping)

Customization parameters for special bridging options. Time intervals
may need to be expressed as a number of seconds or milliseconds: the
default value type is specified below. If necessary, time intervals can
be qualified using a time suffix (such as “s” for seconds, “ms” for
milliseconds) to allow for more control over its behavior.

	ageing-time, aging-time (scalar)

Set the period of time to keep a MAC address in the forwarding
database after a packet is received. This maps to the AgeingTimeSec=
property when the networkd renderer is used. If no time suffix is
specified, the value will be interpreted as seconds.

	priority (scalar)

Set the priority value for the bridge. This value should be a
number between 0 and 65535. Lower values mean higher
priority. The bridge with the higher priority will be elected as
the root bridge.

	port-priority (scalar)

Set the port priority to . The priority value is
a number between 0 and 63. This metric is used in the
designated port and root port selection algorithms.

 How-to guides

How-to guides

	Examples
	Using DHCP and static addressing

	Connecting multiple interfaces with DHCP

	Connecting to an open wireless network

	Connecting to a WPA Personal wireless network

	Connecting to WPA Enterprise wireless networks

	Using multiple addresses on a single interface

	Using multiple addresses with multiple gateways

	Using Network Manager as a renderer

	Configuring interface bonding

	Configuring network bridges

	Attaching VLANs to network interfaces

	Reaching a directly connected gateway

	Configuring source routing

	Configuring a loopback interface

	Integration with a Windows DHCP Server

	Connecting an IP tunnel

	Configuring SR-IOV Virtual Functions

	Complex example

	How to use DBus config API

 Examples

Examples

Below are a collection of example netplan configurations for common scenarios.
If you see a scenario missing or have one to contribute, please file a bug
against this documentation with the example.

To configure netplan, save configuration files under /etc/netplan/ with a
.yaml extension (e.g. /etc/netplan/config.yaml), then run
sudo netplan apply. This command parses and applies the configuration to the
system. Configuration written to disk under /etc/netplan/ will persist between
reboots.

Also, see /examples [https://github.com/canonical/netplan/tree/main/examples]
on GitHub.

Using DHCP and static addressing

To let the interface named enp3s0 get an address via DHCP, create a YAML file with the following:

network:
 version: 2
 renderer: networkd
 ethernets:
 enp3s0:
 dhcp4: true

To instead set a static IP address, use the addresses key, which takes a list of (IPv4 or IPv6), addresses along with the subnet prefix length (e.g. /24). DNS information can be provided as well, and the gateway can be defined via a default route:

network:
 version: 2
 renderer: networkd
 ethernets:
 enp3s0:
 addresses:
 - 10.10.10.2/24
 nameservers:
 search: [mydomain, otherdomain]
 addresses: [10.10.10.1, 1.1.1.1]
 routes:
 - to: default
 via: 10.10.10.1

Connecting multiple interfaces with DHCP

Many systems now include more than one network interface. Servers will commonly need to connect to multiple networks, and may require that traffic to the Internet goes through a specific interface despite all of them providing a valid gateway.

One can achieve the exact routing desired over DHCP by specifying a metric for the routes retrieved over DHCP, which will ensure some routes are preferred over others. In this example, ‘enred’ is preferred over ‘engreen’, as it has a lower route metric:

network:
 version: 2
 ethernets:
 enred:
 dhcp4: yes
 dhcp4-overrides:
 route-metric: 100
 engreen:
 dhcp4: yes
 dhcp4-overrides:
 route-metric: 200

Connecting to an open wireless network

Netplan easily supports connecting to an open wireless network (one that is not secured by a password), only requiring that the access point is defined:

network:
 version: 2
 wifis:
 wl0:
 access-points:
 opennetwork: {}
 dhcp4: yes

Connecting to a WPA Personal wireless network

Wireless devices use the ‘wifis’ key and share the same configuration options with wired ethernet devices. The wireless access point name and password should also be specified:

network:
 version: 2
 renderer: networkd
 wifis:
 wlp2s0b1:
 dhcp4: no
 dhcp6: no
 addresses: [192.168.0.21/24]
 nameservers:
 addresses: [192.168.0.1, 8.8.8.8]
 access-points:
 "network_ssid_name":
 password: "**********"
 routes:
 - to: default
 via: 192.168.0.1

Connecting to WPA Enterprise wireless networks

It is also common to find wireless networks secured using WPA or WPA2 Enterprise, which requires additional authentication parameters.

For example, if the network is secured using WPA-EAP and TTLS:

network:
 version: 2
 wifis:
 wl0:
 access-points:
 workplace:
 auth:
 key-management: eap
 method: ttls
 anonymous-identity: "@internal.example.com"
 identity: "joe@internal.example.com"
 password: "v3ryS3kr1t"
 dhcp4: yes

Or, if the network is secured using WPA-EAP and TLS:

network:
 version: 2
 wifis:
 wl0:
 access-points:
 university:
 auth:
 key-management: eap
 method: tls
 anonymous-identity: "@cust.example.com"
 identity: "cert-joe@cust.example.com"
 ca-certificate: /etc/ssl/cust-cacrt.pem
 client-certificate: /etc/ssl/cust-crt.pem
 client-key: /etc/ssl/cust-key.pem
 client-key-password: "d3cryptPr1v4t3K3y"
 dhcp4: yes

Many different modes of encryption are supported. See the Netplan reference page.

Using multiple addresses on a single interface

The addresses key can take a list of addresses to assign to an interface:

network:
 version: 2
 renderer: networkd
 ethernets:
 enp3s0:
 addresses:
 - 10.100.1.37/24
 - 10.100.1.38/24:
 label: "enp3s0:0"
 - 10.100.1.39/24:
 label: "enp3s0:some-label"
 routes:
 - to: default
 via: 10.100.1.1

Using multiple addresses with multiple gateways

Similar to the example above, interfaces with multiple addresses can be
configured with multiple gateways, and static DNS nameservers (Google DNS for
this example):

network:
 version: 2
 renderer: networkd
 ethernets:
 enp3s0:
 addresses:
 - 10.0.0.10/24
 - 11.0.0.11/24
 nameservers:
 addresses:
 - 8.8.8.8
 - 8.8.4.4
 routes:
 - to: default
 via: 10.0.0.1
 metric: 200
 - to: default
 via: 11.0.0.1
 metric: 300

We configure individual routes to default (or 0.0.0.0/0) using the address of the gateway for the subnet. The metric value should be adjusted so the routing happens as expected.

DHCP can be used to receive one of the IP addresses for the interface. In this case, the default route for that address will be automatically configured with a metric value of 100.

Using Network Manager as a renderer

Netplan supports both networkd and Network Manager as backends. You can specify which network backend should be used to configure particular devices by using the renderer key. You can also delegate all configuration of the network to Network Manager itself by specifying only the renderer key:

network:
 version: 2
 renderer: NetworkManager

Configuring interface bonding

Bonding is configured by declaring a bond interface with a list of physical interfaces and a bonding mode. Below is an example of an active-backup bond that uses DHCP to obtain an address:

network:
 version: 2
 renderer: networkd
 bonds:
 bond0:
 dhcp4: yes
 interfaces:
 - enp3s0
 - enp4s0
 parameters:
 mode: active-backup
 primary: enp3s0

Below is an example of a system acting as a router with various bonded interfaces and different types. Note the ‘optional: true’ key declarations that allow booting to occur without waiting for those interfaces to activate fully.

network:
 version: 2
 renderer: networkd
 ethernets:
 enp1s0:
 dhcp4: no
 enp2s0:
 dhcp4: no
 enp3s0:
 dhcp4: no
 optional: true
 enp4s0:
 dhcp4: no
 optional: true
 enp5s0:
 dhcp4: no
 optional: true
 enp6s0:
 dhcp4: no
 optional: true
 bonds:
 bond-lan:
 interfaces: [enp2s0, enp3s0]
 addresses: [192.168.93.2/24]
 parameters:
 mode: 802.3ad
 mii-monitor-interval: 1
 bond-wan:
 interfaces: [enp1s0, enp4s0]
 addresses: [192.168.1.252/24]
 nameservers:
 search: [local]
 addresses: [8.8.8.8, 8.8.4.4]
 parameters:
 mode: active-backup
 mii-monitor-interval: 1
 gratuitious-arp: 5
 routes:
 - to: default
 via: 192.168.1.1
 bond-conntrack:
 interfaces: [enp5s0, enp6s0]
 addresses: [192.168.254.2/24]
 parameters:
 mode: balance-rr
 mii-monitor-interval: 1

Configuring network bridges

To create a very simple bridge consisting of a single device that uses DHCP, write:

network:
 version: 2
 renderer: networkd
 ethernets:
 enp3s0:
 dhcp4: no
 bridges:
 br0:
 dhcp4: yes
 interfaces:
 - enp3s0

A more complex example, to get libvirtd to use a specific bridge with a tagged vlan, while continuing to provide an untagged interface as well would involve:

network:
 version: 2
 renderer: networkd
 ethernets:
 enp0s25:
 dhcp4: true
 bridges:
 br0:
 addresses: [10.3.99.25/24]
 interfaces: [vlan15]
 vlans:
 vlan15:
 accept-ra: no
 id: 15
 link: enp0s25

Then libvirtd would be configured to use this bridge by adding the following content to a new XML file under /etc/libvirtd/qemu/networks/. The name of the bridge in the <bridge> tag as well as in <name> need to match the name of the bridge device configured using netplan:

<network>
 <name>br0</name>
 <bridge name='br0'/>
 <forward mode="bridge"/>
</network>

Attaching VLANs to network interfaces

To configure multiple VLANs with renamed interfaces:

network:
 version: 2
 renderer: networkd
 ethernets:
 mainif:
 match:
 macaddress: "de:ad:be:ef:ca:fe"
 set-name: mainif
 addresses: ["10.3.0.5/23"]
 nameservers:
 addresses: ["8.8.8.8", "8.8.4.4"]
 search: [example.com]
 routes:
 - to: default
 via: 10.3.0.1
 vlans:
 vlan15:
 id: 15
 link: mainif
 addresses: ["10.3.99.5/24"]
 vlan10:
 id: 10
 link: mainif
 addresses: ["10.3.98.5/24"]
 nameservers:
 addresses: ["127.0.0.1"]
 search: [domain1.example.com, domain2.example.com]

Reaching a directly connected gateway

This allows setting up a default route, or any route, using the “on-link” keyword where the gateway is an IP address that is directly connected to the network even if the address does not match the subnet configured on the interface.

network:
 version: 2
 renderer: networkd
 ethernets:
 ens3:
 addresses: ["10.10.10.1/24"]
 routes:
 - to: default # or 0.0.0.0/0
 via: 9.9.9.9
 on-link: true

For IPv6 the config would be very similar, with the notable difference being an additional scope: link host route to the router’s address required:

network:
 version: 2
 renderer: networkd
 ethernets:
 ens3:
 addresses: ["2001:cafe:face:beef::dead:dead/64"]
 routes:
 - to: "2001:cafe:face::1/128"
 scope: link
 - to: default # or "::/0"
 via: "2001:cafe:face::1"
 on-link: true

Configuring source routing

Route tables can be added to particular interfaces to allow routing between two networks:

In the example below, ens3 is on the 192.168.3.0/24 network and ens5 is on the 192.168.5.0/24 network. This enables clients on either network to connect to the other and allow the response to come from the correct interface.

Furthermore, the default route is still assigned to ens5 allowing any other traffic to go through it.

network:
 version: 2
 renderer: networkd
 ethernets:
 ens3:
 addresses:
 - 192.168.3.30/24
 dhcp4: no
 routes:
 - to: 192.168.3.0/24
 via: 192.168.3.1
 table: 101
 routing-policy:
 - from: 192.168.3.0/24
 table: 101
 ens5:
 addresses:
 - 192.168.5.24/24
 dhcp4: no
 routes:
 - to: default
 via: 192.168.5.1
 - to: 192.168.5.0/24
 via: 192.168.5.1
 table: 102
 routing-policy:
 - from: 192.168.5.0/24
 table: 102

Configuring a loopback interface

Networkd does not allow creating new loopback devices, but a user can add new addresses to the standard loopback interface, lo, in order to have it considered a valid address on the machine as well as for custom routing:

network:
 version: 2
 renderer: networkd
 ethernets:
 lo:
 addresses: ["127.0.0.1/8", "::1/128", "7.7.7.7/32"]

Integration with a Windows DHCP Server

For networks where DHCP is provided by a Windows Server using the dhcp-identifier key allows for interoperability:

network:
 version: 2
 ethernets:
 enp3s0:
 dhcp4: yes
 dhcp-identifier: mac

Connecting an IP tunnel

Tunnels allow an administrator to extend networks across the Internet by configuring two endpoints that will connect a special tunnel interface and do the routing required. Netplan supports SIT, GRE, IP-in-IP (ipip, ipip6, ip6ip6), IP6GRE, VTI and VTI6 tunnels.

A common use of tunnels is to enable IPv6 connectivity on networks that only support IPv4. The example below show how such a tunnel might be configured.

Here, 1.1.1.1 is the client’s own IP address; 2.2.2.2 is the remote server’s IPv4 address, “2001:dead:beef::2/64” is the client’s IPv6 address as defined by the tunnel, and “2001:dead:beef::1” is the remote server’s IPv6 address.

Finally, “2001:cafe:face::1/64” is an address for the client within the routed IPv6 prefix:

network:
 version: 2
 ethernets:
 eth0:
 addresses:
 - 1.1.1.1/24
 - "2001:cafe:face::1/64"
 routes:
 - to: default
 via: 1.1.1.254
 tunnels:
 he-ipv6:
 mode: sit
 remote: 2.2.2.2
 local: 1.1.1.1
 addresses:
 - "2001:dead:beef::2/64"
 routes:
 - to: default
 via: "2001:dead:beef::1"

Configuring SR-IOV Virtual Functions

For SR-IOV network cards, it is possible to dynamically allocate Virtual Function interfaces for every configured Physical Function. In netplan, a VF is defined by having a link: property pointing to the parent PF.

network:
 version: 2
 ethernets:
 eno1:
 mtu: 9000
 enp1s16f1:
 link: eno1
 addresses : ["10.15.98.25/24"]
 vf1:
 match:
 name: enp1s16f[2-3]
 link: eno1
 addresses : ["10.15.99.25/24"]

Complex example

This is a complex example which shows most available features

 network:
 version: 2
 # if specified, can only realistically have that value, as networkd cannot
 # render wifi/3G.
 renderer: NetworkManager
 vrfs:
 mgmt-vrf:
 table: 10
 interfaces:
 - id1
 routes:
 - to: default
 via: 192.168.24.254
 metric: 100
 ethernets:
 lo:
 addresses:
 - 172.16.20.20/32
 link-local: []
 # opaque ID for physical interfaces, only referred to by other stanzas
 id0:
 match:
 macaddress: 00:11:22:33:44:55
 wakeonlan: true
 dhcp4: true
 addresses:
 - 192.168.14.2/24
 - 192.168.14.3/24
 - "2001:1::1/64"
 nameservers:
 search: [foo.local, bar.local]
 addresses: [8.8.8.8]
 routes:
 - to: default
 via: 192.168.14.1
 - to: default
 via: "2001:1::2"
 - to: 0.0.0.0/0
 via: 11.0.0.1
 table: 70
 on-link: true
 metric: 3
 routing-policy:
 - to: 10.0.0.0/8
 from: 192.168.14.2/24
 table: 70
 priority: 100
 - to: 20.0.0.0/8
 from: 192.168.14.3/24
 table: 70
 priority: 50
 # only networkd can render on-link routes and routing policies
 renderer: networkd
 id1:
 match:
 macaddress: 00:11:22:33:44:56
 wakeonlan: true
 dhcp4: true
 addresses:
 - 192.168.24.2/24
 lom:
 match:
 driver: ixgbe
 # you are responsible for setting tight enough match rules
 # that only match one device if you use set-name
 set-name: lom1
 dhcp6: true
 switchports:
 # all cards on second PCI bus unconfigured by
 # themselves, will be added to br0 below
 match:
 name: enp2*
 mtu: 1280
 wifis:
 all-wlans:
 # useful on a system where you know there is
 # only ever going to be one device
 match: {}
 access-points:
 "Joe's home":
 # mode defaults to "infrastructure" (client)
 password: "s3kr1t"
 # this creates an AP on wlp1s0 using hostapd
 # no match rules, thus the ID is the interface name
 wlp1s0:
 access-points:
 "guest":
 mode: ap
 # no WPA config implies default of open
 bridges:
 # the key name is the name for virtual (created) interfaces
 # no match: and set-name: allowed
 br0:
 # IDs of the components; switchports expands into multiple interfaces
 interfaces: [wlp1s0, switchports]
 dhcp4: true
 br20:
 interfaces: [vxlan20]
 tunnels:
 vxlan20:
 mode: vxlan
 link: lo
 id: 20
 mtu: 8950
 accept-ra: no
 neigh-suppress: true
 link-local: []
 mac-learning: false
 port: 4789
 local: 172.16.20.20

 How to use DBus config API

How to use DBus config API

Copy the current state from /{etc,run,lib}/netplan/*.yaml by creating a new config object

$ busctl call io.netplan.Netplan /io/netplan/Netplan io.netplan.Netplan Config
o "/io/netplan/Netplan/config/ULJIU0"

Read the merged YAML configuration

$ busctl call io.netplan.Netplan /io/netplan/Netplan/config/ULJIU0 io.netplan.Netplan.Config Get
s "network:\n ethernets:\n eth0:\n dhcp4: true\n renderer: networkd\n version: 2\n"

Write a new config snippet into 70-snapd.yaml

$ busctl call io.netplan.Netplan /io/netplan/Netplan/config/ULJIU0 io.netplan.Netplan.Config Set ss "ethernets.eth0={dhcp4: false, dhcp6: true}" "70-snapd"
b true

Check the newly written configuration

$ busctl call io.netplan.Netplan /io/netplan/Netplan/config/ULJIU0 io.netplan.Netplan.Config Get
s "network:\n ethernets:\n eth0:\n dhcp4: false\n dhcp6: true\n renderer: networkd\n version: 2\n"

Try to apply the current config object’s state

$ busctl call io.netplan.Netplan /io/netplan/Netplan/config/ULJIU0 io.netplan.Netplan.Config Try u 20
b true

Accept the Try() state within the 20 seconds timeout, if not it will be auto-rejected

$ busctl call io.netplan.Netplan /io/netplan/Netplan/config/ULJIU0 io.netplan.Netplan.Config Apply
b true

[SIGNAL] io.netplan.Netplan /io/netplan/Netplan/config/ULJIU0 io.netplan.Netplan.Config Changed() is triggered
[OBJECT] io.netplan.Netplan /io/netplan/Netplan/config/ULJIU0 is removed from the bus

Create a new config object and get the merged YAML config

$ busctl call io.netplan.Netplan /io/netplan/Netplan io.netplan.Netplan Config
o "/io/netplan/Netplan/config/KC0IU0
$ busctl call io.netplan.Netplan /io/netplan/Netplan/config/KC0IU0 io.netplan.Netplan.Config Get
s "network:\n ethernets:\n eth0:\n dhcp4: false\n dhcp6: true\n renderer: networkd\n version: 2\n"

Reject that config object again

$ busctl call io.netplan.Netplan /io/netplan/Netplan/config/KC0IU0 io.netplan.Netplan.Config Cancel
b true

[SIGNAL] io.netplan.Netplan /io/netplan/Netplan/config/KC0IU0 io.netplan.Netplan.Config Changed() is triggered
[OBJECT] io.netplan.Netplan /io/netplan/Netplan/config/KC0IU0 is removed from the bus

 Tutorials

Tutorials

Here you can find some external blog posts, describing the usage of Netplan on different systems.

Ubuntu 22.04 LTS

	https://vitux.com/how-to-configure-networking-with-netplan-on-ubuntu/

Ubuntu 20.04 LTS

	https://linux-on-z.blogspot.com/p/using-netplan-on-ibm-z.html

	https://linuxconfig.org/netplan-network-configuration-tutorial-for-beginners

	https://www.serverlab.ca/tutorials/linux/administration-linux/how-to-configure-networking-in-ubuntu-20-04-with-netplan/

Ubuntu 18.04 LTS

	https://www.linux.com/topic/distributions/how-use-netplan-network-configuration-tool-linux/

	https://linuxhint.com/install_netplan_ubuntu/

 Explanation

Explanation

Design

	Netplan Design [https://netplan.io/design]
– Network configuration abstraction via systemd-generator

FAQs

	Netplan FAQs [https://netplan.io/faq]
– Find answers to common questions

 Index

Index

 Netplan Documentation

Netplan Documentation

	Reference
	YAML configuration

	API specification

	How-to guides
	Examples

	How to use DBus config API

	Tutorials
	Ubuntu 22.04 LTS

	Ubuntu 20.04 LTS

	Ubuntu 18.04 LTS

	Explanation
	Design

	FAQs

Project and community

	Reporting bugs: We want to know about the problems so we can fix them.

	Code changes: The code is open and we are open to accepting changes to
it. So, don’t worry about maintaining a new fork, and instead, let’s work
together.

If you want to get involved

	Visit the website at netplan.io [https://netplan.io]

	Join the community forum [https://askubuntu.com/questions/tagged/netplan]

	Report a bug on Launchpad [https://bugs.launchpad.net/netplan/+filebug]

	Contribute on GitHub [https://github.com/canonical/netplan]

 SEE ALSO

SEE ALSO

netplan-generate(8), netplan-apply(8), netplan-try(8), netplan-get(8), netplan-set(8), netplan-dbus(8), systemd-networkd(8), NetworkManager(8)

 netplan

netplan

NAME

netplan - YAML network configuration abstraction for various backends

SYNOPSIS

netplan [COMMAND | help]

COMMANDS

See netplan help for a list of available commands on this system.

DESCRIPTION

 netplan-apply

netplan-apply

NAME

netplan-apply - apply configuration from netplan YAML files to a running system

SYNOPSIS

netplan [–debug] apply -h | –help

netplan [–debug] apply

DESCRIPTION

netplan apply applies the current netplan configuration to a running system.

The process works as follows:

	The backend configuration is generated from netplan YAML files.

	The appropriate backends (systemd-networkd(8) or
NetworkManager(8)) are invoked to bring up configured interfaces.

	netplan apply iterates through interfaces that are still down, unbinding
them from their drivers, and rebinding them. This gives udev(7) renaming
rules the opportunity to run.

	If any devices have been rebound, the appropriate backends are re-invoked in
case more matches can be done.

For information about the generation step, see
netplan-generate(8). For details of the configuration file format,
see netplan(5).

OPTIONS

-h, –help
: Print basic help.

–debug
: Print debugging output during the process.

KNOWN ISSUES

netplan apply will not remove virtual devices such as bridges and bonds
that have been created, even if they are no longer described in the netplan
configuration. That is due to the fact that netplan operates statelessly and
is not aware of the previously defined virtual devices.

This can be resolved by manually removing the virtual device (for example
ip link delete dev bond0) and then running netplan apply, by rebooting,
or by creating a temporary backup of the YAML state in /etc/netplan
before modifying the configuration and passing this state to netplan (e.g.
mkdir -p /tmp/netplan_state_backup/etc && cp -r /etc/netplan /tmp/netplan_state_backup/etc/
then running netplan apply –state /tmp/netplan_state_backup)

SEE ALSO

netplan(5), netplan-generate(8), netplan-try(8), udev(7),
systemd-networkd.service(8), NetworkManager(8)

 netplan-dbus

netplan-dbus

NAME

netplan-dbus - daemon to access netplan’s functionality via a DBus API

SYNOPSIS

netplan-dbus

DESCRIPTION

netplan-dbus is a DBus daemon, providing io.netplan.Netplan on the system bus. The /io/netplan/Netplan object provides an io.netplan.Netplan interface, offering the following methods:

	Apply() -> b: calls netplan apply and returns a success or failure status.

	Generate() -> b: calls netplan generate and returns a success or failure status.

	Info() -> a(sv): returns a dict “Features -> as”, containing an array of all available feature flags.

	Config() -> o: prepares a new config object as /io/netplan/Netplan/config/<ID>, by copying the current state from /{etc,run,lib}/netplan/*.yaml

The /io/netplan/Netplan/config/<ID> objects provide a io.netplan.Netplan.Config interface, offering the following methods:

	Get() -> s: calls netplan get –root-dir=/run/netplan/config-ID all and returns the merged YAML config of the the given config object’s state

	Set(s:CONFIG_DELTA, s:ORIGIN_HINT) -> b: calls netplan set –root-dir=/run/netplan/config-ID –origin-hint=ORIGIN_HINT CONFIG_DELTA

CONFIG_DELTA can be something like: network.ethernets.eth0.dhcp4=true and
ORIGIN_HINT can be something like: 70-snapd (it will then write the config
to 70-snapd.yaml). Once Set() is called on a config object, all other
current and future config objects are being invalidated and cannot Set() or
Try()/Apply() anymore, due to this pending dirty state. After the dirty
config object is rejected via Cancel(), the other config objects are valid
again. If the dirty config object is accepted via Apply(), newly created
config objects will be valid, while the older states will stay invalid.

	Try(u:TIMEOUT_SEC) -> b: replaces the main netplan configuration with this config object’s state and calls netplan try –timeout=TIMEOUT_SEC

	Cancel() -> b: rejects a currently running Try() attempt on this config object and/or discards the config object

	Apply() -> b: replaces the main netplan configuration with this config object’s state and calls netplan apply

For information about the Apply()/Try()/Get()/Set() functionality, see
netplan-apply(8)/netplan-try(8)/netplan-get(8)/netplan-set(8)
accordingly. For details of the configuration file format, see netplan(5).

SEE ALSO

netplan(5), netplan-apply(8), netplan-try(8), netplan-get(8),
netplan-set(8)

 netplan-generate

netplan-generate

NAME

netplan-generate - generate backend configuration from netplan YAML files

SYNOPSIS

netplan [–debug] generate -h | –help

netplan [–debug] generate [–root-dir ROOT_DIR] [–mapping MAPPING]

DESCRIPTION

netplan generate converts netplan YAML into configuration files
understood by the backends (systemd-networkd(8) or
NetworkManager(8)). It does not apply the generated
configuration.

You will not normally need to run this directly as it is run by
netplan apply, netplan try, or at boot.

Only if executed during the systemd initializing phase
(i.e. “Early bootup, before basic.target is reached”), will
it attempt to start/apply the newly created service units.
Requires feature: generate-just-in-time

For details of the configuration file format, see netplan(5).

OPTIONS

-h, –help
: Print basic help.

–debug
: Print debugging output during the process.

–root-dir ROOT_DIR
: Instead of looking in /{lib,etc,run}/netplan, look in
/ROOT_DIR/{lib,etc,run}/netplan

–mapping MAPPING
: Instead of generating output files, parse the configuration files
and print some internal information about the device specified in
MAPPING.

HANDLING MULTIPLE FILES

There are 3 locations that netplan generate considers:

	/lib/netplan/*.yaml

	/etc/netplan/*.yaml

	/run/netplan/*.yaml

If there are multiple files with exactly the same name, then only one
will be read. A file in /run/netplan will shadow - completely replace

	a file with the same name in /etc/netplan. A file in /etc/netplan
will itself shadow a file in /lib/netplan.

Or in other words, /run/netplan is top priority, then /etc/netplan,
with /lib/netplan having the lowest priority.

If there are files with different names, then they are considered in
lexicographical order - regardless of the directory they are in. Later
files add to or override earlier files. For example,
/run/netplan/10-foo.yaml would be updated by /lib/netplan/20-abc.yaml.

If you have two files with the same key/setting, the following rules
apply:

	If the values are YAML boolean or scalar values (numbers and
strings) the old value is overwritten by the new value.

	If the values are sequences, the sequences are concatenated - the
new values are appended to the old list.

	If the values are mappings, netplan will examine the elements
of the mappings in turn using these rules.

SEE ALSO

netplan(5), netplan-apply(8), netplan-try(8),
systemd-networkd(8), NetworkManager(8)

 netplan-get

netplan-get

NAME

netplan-get - read merged netplan YAML configuration

SYNOPSIS

netplan [–debug] get -h | –help

netplan [–debug] get [–root-dir=ROOT_DIR] [key]

DESCRIPTION

netplan get [key] reads all YAML files from /{etc,lib,run}/netplan/*.yaml and returns a merged view of the current configuration

You can specify all as a key (the default) to get the full YAML tree or extract a subtree by specifying a nested key like: [network.]ethernets.eth0.

For details of the configuration file format, see netplan(5).

OPTIONS

-h, –help
: Print basic help.

–debug
: Print debugging output during the process.

–root-dir
: Read YAML files from this root instead of /

SEE ALSO

netplan(5), netplan-set(8), netplan-dbus(8)

 netplan-set

netplan-set

NAME

netplan-set - write netplan YAML configuration snippets to file

SYNOPSIS

netplan [–debug] set -h | –help

netplan [–debug] set [–root-dir=ROOT_DIR] [–origin-hint=ORIGIN_HINT] [key=value]

DESCRIPTION

netplan set [key=value] writes a given key/value pair or YAML subtree into a YAML file in /etc/netplan/ and validates its format.

You can specify a single value as: "[network.]ethernets.eth0.dhcp4=[1.2.3.4/24, 5.6.7.8/24]" or a full subtree as: "[network.]ethernets.eth0={dhcp4: true, dhcp6: true}".

For details of the configuration file format, see netplan(5).

OPTIONS

-h, –help
: Print basic help.

–debug
: Print debugging output during the process.

–root-dir
: Write YAML files into this root instead of /

–origin-hint
: Specify a name for the config file, e.g.: 70-netplan-set => /etc/netplan/70-netplan-set.yaml

SEE ALSO

netplan(5), netplan-get(8), netplan-dbus(8)

 netplan-try

netplan-try

NAME

netplan-try - try a configuration, optionally rolling it back

SYNOPSIS

netplan [–debug] try -h | –help

netplan [–debug] try [–config-file CONFIG_FILE] [–timeout TIMEOUT]

DESCRIPTION

netplan try takes a netplan(5) configuration, applies it, and
automatically rolls it back if the user does not confirm the
configuration within a time limit.

A configuration can be confirmed or rejected interactively or by sending the
SIGUSR1 or SIGINT signals.

This may be especially useful on remote systems, to prevent an
administrator being permanently locked out of systems in the case of a
network configuration error.

OPTIONS

-h, –help
: Print basic help.

–debug
: Print debugging output during the process.

–config-file CONFIG_FILE
: In addition to the usual configuration, apply CONFIG_FILE. It must
be a YAML file in the netplan(5) format.

–timeout TIMEOUT
: Wait for TIMEOUT seconds before reverting. Defaults to 120
seconds. Note that some network configurations (such as STP) may take
over a minute to settle.

KNOWN ISSUES

netplan try uses similar procedures to netplan apply, so some
of the same caveats apply around virtual devices.

There are also some known bugs: if netplan try times out or is
cancelled, make sure to verify if the network configuration has in
fact been reverted.

As with netplan apply, a reboot should fix any issues. However, be
sure to verify that the config on disk is in the state you expect
before rebooting!

SEE ALSO

netplan(5), netplan-generate(8), netplan-apply(8)

 YAML configuration

YAML configuration

Introduction

Distribution installers, cloud instantiation, image builds for particular
devices, or any other way to deploy an operating system put its desired
network configuration into YAML configuration file(s). During
early boot, the netplan “network renderer” runs which reads
/{lib,etc,run}/netplan/*.yaml and writes configuration to /run to hand
off control of devices to the specified networking daemon.

	Configured devices get handled by systemd-networkd by default,
unless explicitly marked as managed by a specific renderer (NetworkManager)

	Devices not covered by the network config do not get touched at all.

	Usable in initramfs (few dependencies and fast)

	No persistent generated config, only original YAML config

	Parser supports multiple config files to allow applications like libvirt or
lxd to package up expected network config (virbr0, lxdbr0), or to change
the global default policy to use NetworkManager for everything.

	Retains the flexibility to change backends/policy later or adjust to
removing NetworkManager, as generated configuration is ephemeral.

General structure

netplan’s configuration files use the
YAML [http://yaml.org/spec/1.1/current.html] format. All
/{lib,etc,run}/netplan/*.yaml are considered. Lexicographically later files
(regardless of in which directory they are) amend (new mapping keys) or
override (same mapping keys) previous ones. A file in /run/netplan
completely shadows a file with same name in /etc/netplan, and a file in
either of those directories shadows a file with the same name in /lib/netplan.

The top-level node in a netplan configuration file is a network: mapping
that contains version: 2 (the YAML currently being used by curtin, MaaS,
etc. is version 1), and then device definitions grouped by their type, such as
ethernets:, modems:, wifis:, or bridges:. These are the types that our
renderer can understand and are supported by our backends.

Each type block contains device definitions as a map where the keys (called
“configuration IDs”) are defined as below.

Device configuration IDs

The key names below the per-device-type definition maps (like ethernets:)
are called “ID”s. They must be unique throughout the entire set of
configuration files. Their primary purpose is to serve as anchor names for
composite devices, for example to enumerate the members of a bridge that is
currently being defined.

(Since 0.97) If an interface is defined with an ID in a configuration file; it
will be brought up by the applicable renderer. To not have netplan touch an
interface at all, it should be completely omitted from the netplan configuration
files.

There are two physically/structurally different classes of device definitions,
and the ID field has a different interpretation for each:

Physical devices

(Examples: ethernet, modem, wifi) These can dynamically come and go between
reboots and even during runtime (hot plugging). In the generic case, they
can be selected by match: rules on desired properties, such as name/name
pattern, MAC address, driver, or device paths. In general these will match
any number of devices (unless they refer to properties which are unique
such as the full path or MAC address), so without further knowledge about
the hardware these will always be considered as a group.

It is valid to specify no match rules at all, in which case the ID field is
simply the interface name to be matched. This is mostly useful if you want
to keep simple cases simple, and it’s how network device configuration has
been done for a long time.

If there are match: rules, then the ID field is a purely opaque name
which is only being used for references from definitions of compound
devices in the config.

Virtual devices

(Examples: veth, bridge, bond, vrf) These are fully under the control of the
config file(s) and the network stack. I. e. these devices are being created
instead of matched. Thus match: and set-name: are not applicable for
these, and the ID field is the name of the created virtual device.

Common properties for physical device types

Note: Some options will not work reliably for devices matched by name only
and rendered by networkd, due to interactions with device renaming in udev.
Match devices by MAC when setting options like: wakeonlan or *-offload.

	match (mapping)

This selects a subset of available physical devices by various hardware
properties. The following configuration will then apply to all matching
devices, as soon as they appear. All specified properties must match.

	name (scalar)

Current interface name. Globs are supported, and the primary use case for
matching on names, as selecting one fixed name can be more easily achieved
with having no match: at all and just using the ID (see above).
(NetworkManager: as of v1.14.0)

	macaddress (scalar)

Device’s 6-byte MAC address in the form “XX:XX:XX:XX:XX:XX” or 20 bytes
for InfiniBand devices (IPoIB). Globs are not allowed.

	driver (scalar or sequence of scalars) – sequence since 0.104

Kernel driver name, corresponding to the DRIVER udev property.
A sequence of globs is supported, any of which must match.
Matching on driver is only supported with networkd.

Examples:

	All cards on second PCI bus:

match:
 name: enp2*

	Fixed MAC address:

match:
 macaddress: 11:22:33:AA:BB:FF

	First card of driver ixgbe:

match:
 driver: ixgbe
 name: en*s0

	First card with a driver matching bcmgenet or smsc*:

match:
 driver: ["bcmgenet", "smsc*"]
 name: en*

	set-name (scalar)

When matching on unique properties such as path or MAC, or with additional
assumptions such as “there will only ever be one wifi device”, match rules
can be written so that they only match one device. Then this property can be
used to give that device a more specific/desirable/nicer name than the
default from udev’s ifnames. Any additional device that satisfies the match
rules will then fail to get renamed and keep the original kernel name (and
dmesg will show an error).

	wakeonlan (bool)

Enable wake on LAN. Off by default.

	emit-lldp (bool) – since 0.99

(networkd backend only) Whether to emit LLDP packets. Off by default.

	receive-checksum-offload (bool) – since 0.104

(networkd backend only) If set to true (false), the hardware offload for
checksumming of ingress network packets is enabled (disabled). When unset,
the kernel’s default will be used.

	transmit-checksum-offload (bool) – since 0.104

(networkd backend only) If set to true (false), the hardware offload for
checksumming of egress network packets is enabled (disabled). When unset,
the kernel’s default will be used.

	tcp-segmentation-offload (bool) – since 0.104

(networkd backend only) If set to true (false), the TCP Segmentation
Offload (TSO) is enabled (disabled). When unset, the kernel’s default will
be used.

	tcp6-segmentation-offload (bool) – since 0.104

(networkd backend only) If set to true (false), the TCP6 Segmentation
Offload (tx-tcp6-segmentation) is enabled (disabled). When unset, the
kernel’s default will be used.

	generic-segmentation-offload (bool) – since 0.104

(networkd backend only) If set to true (false), the Generic Segmentation
Offload (GSO) is enabled (disabled). When unset, the kernel’s default will
be used.

	generic-receive-offload (bool) – since 0.104

(networkd backend only) If set to true (false), the Generic Receive
Offload (GRO) is enabled (disabled). When unset, the kernel’s default will
be used.

	large-receive-offload (bool) – since 0.104

(networkd backend only) If set to true (false), the Large Receive Offload
(LRO) is enabled (disabled). When unset, the kernel’s default will
be used.

	openvswitch (mapping) – since 0.100

This provides additional configuration for the openvswitch network device.
If Open vSwitch is not available on the system, netplan treats the presence
of openvswitch configuration as an error.

Any supported network device that is declared with the openvswitch
mapping (or any bond/bridge that includes an interface with an openvswitch
configuration) will be created in openvswitch instead of the defined
renderer. In the case of a vlan definition declared the same way,
netplan will create a fake VLAN bridge in openvswitch with the requested
vlan properties.

	external-ids (mapping) – since 0.100

Passed-through directly to Open vSwitch

	other-config (mapping) – since 0.100

Passed-through directly to Open vSwitch

	lacp (scalar) – since 0.100

Valid for bond interfaces. Accepts active, passive or off (the
default).

	fail-mode (scalar) – since 0.100

Valid for bridge interfaces. Accepts secure or standalone (the
default).

	mcast-snooping (bool) – since 0.100

Valid for bridge interfaces. False by default.

	protocols (sequence of scalars) – since 0.100

Valid for bridge interfaces or the network section. List of protocols to
be used when negotiating a connection with the controller. Accepts
OpenFlow10, OpenFlow11, OpenFlow12, OpenFlow13, OpenFlow14,
OpenFlow15 and OpenFlow16.

	rstp (bool) – since 0.100

Valid for bridge interfaces. False by default.

	controller (mapping) – since 0.100

Valid for bridge interfaces. Specify an external OpenFlow controller.

	addresses (sequence of scalars)

Set the list of addresses to use for the controller targets. The
syntax of these addresses is as defined in ovs-vsctl(8). Example:
addresses: [tcp:127.0.0.1:6653, "ssl:[fe80::1234%eth0]:6653"]

	connection-mode (scalar)

Set the connection mode for the controller. Supported options are
in-band and out-of-band. The default is in-band.

	ports (sequence of sequence of scalars) – since 0.100

Open vSwitch patch ports. Each port is declared as a pair of names
which can be referenced as interfaces in dependent virtual devices
(bonds, bridges).

Example:

openvswitch:
 ports:
 - [patch0-1, patch1-0]

	ssl (mapping) – since 0.100

Valid for global openvswitch settings. Options for configuring SSL
server endpoint for the switch.

	ca-cert (scalar)

Path to a file containing the CA certificate to be used.

	certificate (scalar)

Path to a file containing the server certificate.

	private-key (scalar)

Path to a file containing the private key for the server.

Common properties for all device types

	renderer (scalar)

Use the given networking backend for this definition. Currently supported
are networkd and NetworkManager. This property can be specified globally
in network:, for a device type (in e. g. ethernets:) or
for a particular device definition. Default is networkd.

(Since 0.99) The renderer property has one additional acceptable value for
vlan objects (i. e. defined in vlans:): sriov. If a vlan is defined with
the sriov renderer for an SR-IOV Virtual Function interface, this causes
netplan to set up a hardware VLAN filter for it. There can be only one
defined per VF.

	dhcp4 (bool)

Enable DHCP for IPv4. Off by default.

	dhcp6 (bool)

Enable DHCP for IPv6. Off by default. This covers both stateless DHCP -
where the DHCP server supplies information like DNS nameservers but not the
IP address - and stateful DHCP, where the server provides both the address
and the other information.

If you are in an IPv6-only environment with completely stateless
auto-configuration (SLAAC with RDNSS), this option can be set to cause the
interface to be brought up. (Setting accept-ra alone is not sufficient.)
Auto-configuration will still honor the contents of the router
advertisement and only use DHCP if requested in the RA.

Note that rdnssd(8) is required to use RDNSS with networkd. No extra
software is required for NetworkManager.

	ipv6-mtu (scalar) – since 0.98

Set the IPv6 MTU (only supported with networkd backend). Note
that needing to set this is an unusual requirement.

Requires feature: ipv6-mtu

	ipv6-privacy (bool)

Enable IPv6 Privacy Extensions (RFC 4941) for the specified interface, and
prefer temporary addresses. Defaults to false - no privacy extensions. There
is currently no way to have a private address but prefer the public address.

	link-local (sequence of scalars)

Configure the link-local addresses to bring up. Valid options are ‘ipv4’
and ‘ipv6’, which respectively allow enabling IPv4 and IPv6 link local
addressing. If this field is not defined, the default is to enable only
IPv6 link-local addresses. If the field is defined but configured as an
empty set, IPv6 link-local addresses are disabled as well as IPv4 link-
local addresses.

This feature enables or disables link-local addresses for a protocol, but
the actual implementation differs per backend. On networkd, this directly
changes the behavior and may add an extra address on an interface. When
using the NetworkManager backend, enabling link-local has no effect if the
interface also has DHCP enabled.

Examples:

	Enable only IPv4 link-local: link-local: [ipv4]

	Enable all link-local addresses: link-local: [ipv4, ipv6]

	Disable all link-local addresses: link-local: []

	ignore-carrier (bool) – since 0.104

(networkd backend only) Allow the specified interface to be configured even
if it has no carrier.

	critical (bool)

Designate the connection as “critical to the system”, meaning that special
care will be taken by to not release the assigned IP when the daemon is
restarted. (not recognized by NetworkManager)

	dhcp-identifier (scalar)

(networkd backend only) Sets the source of DHCPv4 client identifier. If
mac is specified, the MAC address of the link is used. If this option is
omitted, or if duid is specified, networkd will generate an
RFC4361-compliant client identifier for the interface by combining the
link’s IAID and DUID.

	dhcp4-overrides (mapping)

(networkd backend only) Overrides default DHCP behavior; see the
DHCP Overrides section below.

	dhcp6-overrides (mapping)

(networkd backend only) Overrides default DHCP behavior; see the
DHCP Overrides section below.

	accept-ra (bool)

Accept Router Advertisement that would have the kernel configure IPv6 by
itself. When enabled, accept Router Advertisements. When disabled, do not
respond to Router Advertisements. If unset use the host kernel default
setting.

	addresses (sequence of scalars and mappings)

Add static addresses to the interface in addition to the ones received
through DHCP or RA. Each sequence entry is in CIDR notation, i. e. of the
form addr/prefixlen. addr is an IPv4 or IPv6 address as recognized
by inet_pton(3) and prefixlen the number of bits of the subnet.

For virtual devices (bridges, bonds, vlan) if there is no address
configured and DHCP is disabled, the interface may still be brought online,
but will not be addressable from the network.

In addition to the addresses themselves one can specify configuration
parameters as mappings. Current supported options are:

	lifetime (scalar) – since 0.100

Default: forever. This can be forever or 0 and corresponds
to the PreferredLifetime option in systemd-networkd’s Address
section. Currently supported on the networkd backend only.

	label (scalar) – since 0.100

An IP address label, equivalent to the ip address label
command. Currently supported on the networkd backend only.

Examples:

	Simple: addresses: [192.168.14.2/24, "2001:1::1/64"]

	Advanced:

ethernets:
 eth0:
 addresses:
 - "10.0.0.15/24":
 lifetime: 0
 label: "maas"
 - "2001:1::1/64"

	ipv6-address-generation (scalar) – since 0.99

Configure method for creating the address for use with RFC4862 IPv6
Stateless Address Auto-configuration (only supported with NetworkManager
backend). Possible values are eui64 or stable-privacy.

	ipv6-address-token (scalar) – since 0.100

Define an IPv6 address token for creating a static interface identifier for
IPv6 Stateless Address Auto-configuration. This is mutually exclusive with
ipv6-address-generation.

	gateway4, gateway6 (scalar)

Deprecated, see Default routes.
Set default gateway for IPv4/6, for manual address configuration. This
requires setting addresses too. Gateway IPs must be in a form
recognized by inet_pton(3). There should only be a single gateway
per IP address family set in your global config, to make it unambiguous.
If you need multiple default routes, please define them via
routing-policy.

Examples

	IPv4: gateway4: 172.16.0.1

	IPv6: gateway6: "2001:4::1"

	nameservers (mapping)

Set DNS servers and search domains, for manual address configuration. There
are two supported fields: addresses: is a list of IPv4 or IPv6 addresses
similar to gateway*, and search: is a list of search domains.

Example:

ethernets:
 id0:
 [...]
 nameservers:
 search: [lab, home]
 addresses: [8.8.8.8, "FEDC::1"]

	macaddress (scalar)

Set the device’s MAC address. The MAC address must be in the form
“XX:XX:XX:XX:XX:XX”.

Note: This will not work reliably for devices matched by name
only and rendered by networkd, due to interactions with device
renaming in udev. Match devices by MAC when setting MAC addresses.

Example:

ethernets:
 id0:
 match:
 macaddress: 52:54:00:6b:3c:58
 [...]
 macaddress: 52:54:00:6b:3c:59

	mtu (scalar)

Set the Maximum Transmission Unit for the interface. The default is 1500.
Valid values depend on your network interface.

Note: This will not work reliably for devices matched by name
only and rendered by networkd, due to interactions with device
renaming in udev. Match devices by MAC when setting MTU.

	optional (bool)

An optional device is not required for booting. Normally, networkd will
wait some time for device to become configured before proceeding with
booting. However, if a device is marked as optional, networkd will not wait
for it. This is only supported by networkd, and the default is false.

Example:

ethernets:
 eth7:
 # this is plugged into a test network that is often
 # down - don't wait for it to come up during boot.
 dhcp4: true
 optional: true

	optional-addresses (sequence of scalars)

Specify types of addresses that are not required for a device to be
considered online. This changes the behavior of backends at boot time to
avoid waiting for addresses that are marked optional, and thus consider
the interface as “usable” sooner. This does not disable these addresses,
which will be brought up anyway.

Example:

ethernets:
 eth7:
 dhcp4: true
 dhcp6: true
 optional-addresses: [ipv4-ll, dhcp6]

	activation-mode (scalar) – since 0.103

Allows specifying the management policy of the selected interface. By
default, netplan brings up any configured interface if possible. Using the
activation-mode setting users can override that behavior by either
specifying manual, to hand over control over the interface state to the
administrator or (for networkd backend only) off to force the link
in a down state at all times. Any interface with activation-mode
defined is implicitly considered optional.
Supported officially as of networkd v248+.

Example:

ethernets:
 eth1:
 # this interface will not be put into an UP state automatically
 dhcp4: true
 activation-mode: manual

	routes (sequence of mappings)

Configure static routing for the device; see the Routing section below.

	routing-policy (sequence of mappings)

Configure policy routing for the device; see the Routing section below.

	neigh-suppress (scalar) – since 0.105

Takes a boolean. Configures whether ARP and ND neighbor suppression is
enabled for this port. When unset, the kernel’s default will be used.

DHCP Overrides

Several DHCP behavior overrides are available. Most currently only have any
effect when using the networkd backend, with the exception of use-routes
and route-metric.

Overrides only have an effect if the corresponding dhcp4 or dhcp6 is
set to true.

If both dhcp4 and dhcp6 are true, the networkd backend requires
that dhcp4-overrides and dhcp6-overrides contain the same keys and
values. If the values do not match, an error will be shown and the network
configuration will not be applied.

When using the NetworkManager backend, different values may be specified for
dhcp4-overrides and dhcp6-overrides, and will be applied to the DHCP
client processes as specified in the netplan YAML.

	dhcp4-overrides, dhcp6-overrides (mapping)

The dhcp4-overrides and `dhcp6-override`` mappings override the
default DHCP behavior.

	use-dns (bool)

Default: true. When true, the DNS servers received from the
DHCP server will be used and take precedence over any statically
configured ones. Currently only has an effect on the networkd
backend.

	use-ntp (bool)

Default: true. When true, the NTP servers received from the
DHCP server will be used by systemd-timesyncd and take precedence
over any statically configured ones. Currently only has an effect on
the networkd backend.

	send-hostname (bool)

Default: true. When true, the machine’s hostname will be sent
to the DHCP server. Currently only has an effect on the networkd
backend.

	use-hostname (bool)

Default: true. When true, the hostname received from the DHCP
server will be set as the transient hostname of the system. Currently
only has an effect on the networkd backend.

	use-mtu (bool)

Default: true. When true, the MTU received from the DHCP
server will be set as the MTU of the network interface. When false,
the MTU advertised by the DHCP server will be ignored. Currently only
has an effect on the networkd backend.

	hostname (scalar)

Use this value for the hostname which is sent to the DHCP server,
instead of machine’s hostname. Currently only has an effect on the
networkd backend.

	use-routes (bool)

Default: true. When true, the routes received from the DHCP
server will be installed in the routing table normally. When set to
false, routes from the DHCP server will be ignored: in this case,
the user is responsible for adding static routes if necessary for
correct network operation. This allows users to avoid installing a
default gateway for interfaces configured via DHCP. Available for
both the networkd and NetworkManager backends.

	route-metric (scalar)

Use this value for default metric for automatically-added routes.
Use this to prioritize routes for devices by setting a lower metric
on a preferred interface. Available for both the networkd and
NetworkManager backends.

	use-domains (scalar) – since 0.98

Takes a boolean, or the special value “route”. When true, the domain
name received from the DHCP server will be used as DNS search domain
over this link, similar to the effect of the Domains= setting. If set
to “route”, the domain name received from the DHCP server will be
used for routing DNS queries only, but not for searching, similar to
the effect of the Domains= setting when the argument is prefixed with
“~”.

Requires feature: dhcp-use-domains

Routing

Complex routing is possible with netplan. Standard static routes as well
as policy routing using routing tables are supported via the networkd
backend.

These options are available for all types of interfaces.

Default routes

The most common need for routing concerns the definition of default routes to
reach the wider Internet. Those default routes can only defined once per IP
family and routing table. A typical example would look like the following:

eth0:
 [...]
 routes:
 - to: default # could be 0/0 or 0.0.0.0/0 optionally
 via: 10.0.0.1
 metric: 100
 on-link: true
 - to: default # could be ::/0 optionally
 via: cf02:de:ad:be:ef::2
eth1:
 [...]
 routes:
 - to: default
 via: 172.134.67.1
 metric: 100
 on-link: true
 # Not on the main routing table,
 # does not conflict with the eth0 default route
 table: 76

	routes (mapping)

The routes block defines standard static routes for an interface.
At least to must be specified. If type is local or nat a
default scope of host is assumed.
If type is unicast and no gateway (via) is given or type is
broadcast, multicast or anycast a default scope of link
is assumed. Otherwise, a global scope is the default setting.

For from, to, and via, both IPv4 and IPv6 addresses are
recognized, and must be in the form addr/prefixlen or addr.

	from (scalar)

Set a source IP address for traffic going through the route.
(NetworkManager: as of v1.8.0)

	to (scalar)

Destination address for the route.

	via (scalar)

Address to the gateway to use for this route.

	on-link (bool)

When set to “true”, specifies that the route is directly connected
to the interface.
(NetworkManager: as of v1.12.0 for IPv4 and v1.18.0 for IPv6)

	metric (scalar)

The relative priority of the route. Must be a positive integer value.

	type (scalar)

The type of route. Valid options are “unicast” (default), “anycast”,
“blackhole”, “broadcast”, “local”, “multicast”, “nat”, “prohibit”,
“throw”, “unreachable” or “xresolve”.

	scope (scalar)

The route scope, how wide-ranging it is to the network. Possible
values are “global”, “link”, or “host”.

	table (scalar)

The table number to use for the route. In some scenarios, it may be
useful to set routes in a separate routing table. It may also be used
to refer to routing policy rules which also accept a table
parameter. Allowed values are positive integers starting from 1.
Some values are already in use to refer to specific routing tables:
see /etc/iproute2/rt_tables.
(NetworkManager: as of v1.10.0)

	mtu (scalar) – since 0.101

The MTU to be used for the route, in bytes. Must be a positive integer
value.

	congestion-window (scalar) – since 0.102

The congestion window to be used for the route, represented by number
of segments. Must be a positive integer value.

	advertised-receive-window (scalar) – since 0.102

The receive window to be advertised for the route, represented by
number of segments. Must be a positive integer value.

	routing-policy (mapping)

The routing-policy block defines extra routing policy for a network,
where traffic may be handled specially based on the source IP, firewall
marking, etc.

For from, to, both IPv4 and IPv6 addresses are recognized, and
must be in the form addr/prefixlen or addr.

	from (scalar)

Set a source IP address to match traffic for this policy rule.

	to (scalar)

Match on traffic going to the specified destination.

	table (scalar)

The table number to match for the route. In some scenarios, it may be
useful to set routes in a separate routing table. It may also be used
to refer to routes which also accept a table parameter.
Allowed values are positive integers starting from 1.
Some values are already in use to refer to specific routing tables:
see /etc/iproute2/rt_tables.

	priority (scalar)

Specify a priority for the routing policy rule, to influence the order
in which routing rules are processed. A higher number means lower
priority: rules are processed in order by increasing priority number.

	mark (scalar)

Have this routing policy rule match on traffic that has been marked
by the iptables firewall with this value. Allowed values are positive
integers starting from 1.

	type-of-service (scalar)

Match this policy rule based on the type of service number applied to
the traffic.

Authentication

Netplan supports advanced authentication settings for ethernet and wifi
interfaces, as well as individual wifi networks, by means of the auth block.

	auth (mapping)

Specifies authentication settings for a device of type ethernets:, or
an access-points: entry on a wifis: device.

The auth block supports the following properties:

	key-management (scalar)

The supported key management modes are none (no key management);
psk (WPA with pre-shared key, common for home wifi); eap (WPA
with EAP, common for enterprise wifi); and 802.1x (used primarily
for wired Ethernet connections).

	password (scalar)

The password string for EAP, or the pre-shared key for WPA-PSK.

The following properties can be used if key-management is eap
or 802.1x:

	method (scalar)

The EAP method to use. The supported EAP methods are tls (TLS),
peap (Protected EAP), and ttls (Tunneled TLS).

	identity (scalar)

The identity to use for EAP.

	anonymous-identity (scalar)

The identity to pass over the unencrypted channel if the chosen EAP
method supports passing a different tunnelled identity.

	ca-certificate (scalar)

Path to a file with one or more trusted certificate authority (CA)
certificates.

	client-certificate (scalar)

Path to a file containing the certificate to be used by the client
during authentication.

	client-key (scalar)

Path to a file containing the private key corresponding to
client-certificate.

	client-key-password (scalar)

Password to use to decrypt the private key specified in
client-key if it is encrypted.

	phase2-auth (scalar) – since 0.99

Phase 2 authentication mechanism.

Properties for device type ethernets:

Ethernet device definitions, beyond common ones described above, also support
some additional properties that can be used for SR-IOV devices.

	link (scalar) – since 0.99

(SR-IOV devices only) The link property declares the device as a
Virtual Function of the selected Physical Function device, as identified
by the given netplan id.

Example:

ethernets:
 enp1: {...}
 enp1s16f1:
 link: enp1

	virtual-function-count (scalar) – since 0.99

(SR-IOV devices only) In certain special cases VFs might need to be
configured outside of netplan. For such configurations
virtual-function-count can be optionally used to set an explicit number of
Virtual Functions for the given Physical Function. If unset, the default is
to create only as many VFs as are defined in the netplan configuration. This
should be used for special cases only.

Requires feature: sriov

	embedded-switch-mode (scalar) – since 0.104

(SR-IOV devices only) Change the operational mode of the embedded switch
of a supported SmartNIC PCI device (e.g. Mellanox ConnectX-5). Possible
values are switchdev or legacy, if unspecified the vendor’s
default configuration is used.

Requires feature: eswitch-mode

	delay-virtual-functions-rebind (bool) – since 0.104

(SR-IOV devices only) Delay rebinding of SR-IOV virtual functions to its
driver after changing the embedded-switch-mode setting to a later stage.
Can be enabled when bonding/VF LAG is in use. Defaults to false.

Requires feature: eswitch-mode

	infiniband-mode (scalar) – since 0.105

(InfiniBand devices only) Change the operational mode of a IPoIB device.
Possible values are datagram or connected. If unspecified the
kernel’s default configuration is used.

Requires feature: infiniband

Properties for device type modems:

GSM/CDMA modem configuration is only supported for the NetworkManager
backend. systemd-networkd does not support modems.

Requires feature: modems

	apn (scalar) – since 0.99

Set the carrier APN (Access Point Name). This can be omitted if
auto-config is enabled.

	auto-config (bool) – since 0.99

Specify whether to try and auto-configure the modem by doing a lookup of
the carrier against the Mobile Broadband Provider database. This may not
work for all carriers.

	device-id (scalar) – since 0.99

Specify the device ID (as given by the WWAN management service) of the
modem to match. This can be found using mmcli.

	network-id (scalar) – since 0.99

Specify the Network ID (GSM LAI format). If this is specified, the device
will not roam networks.

	number (scalar) – since 0.99

The number to dial to establish the connection to the mobile broadband
network. (Deprecated for GSM)

	password (scalar) – since 0.99

Specify the password used to authenticate with the carrier network. This
can be omitted if auto-config is enabled.

	pin (scalar) – since 0.99

Specify the SIM PIN to allow it to operate if a PIN is set.

	sim-id (scalar) – since 0.99

Specify the SIM unique identifier (as given by the WWAN management service)
which this connection applies to. If given, the connection will apply to
any device also allowed by device-id which contains a SIM card matching
the given identifier.

	sim-operator-id (scalar) – since 0.99

Specify the MCC/MNC string (such as “310260” or “21601”) which identifies
the carrier that this connection should apply to. If given, the connection
will apply to any device also allowed by device-id and sim-id
which contains a SIM card provisioned by the given operator.

	username (scalar) – since 0.99

Specify the username used to authenticate with the carrier network. This
can be omitted if auto-config is enabled.

Properties for device type wifis:

Note that systemd-networkd does not natively support wifi, so you need
wpasupplicant installed if you let the networkd renderer handle wifi.

	access-points (mapping)

This provides pre-configured connections to NetworkManager. Note that
users can of course select other access points/SSIDs. The keys of the
mapping are the SSIDs, and the values are mappings with the following
supported properties:

	password (scalar)

Enable WPA2 authentication and set the passphrase for it. If neither
this nor an auth block are given, the network is assumed to be
open. The setting

password: "S3kr1t"

is equivalent to

auth:
 key-management: psk
 password: "S3kr1t"

	mode (scalar)

Possible access point modes are infrastructure (the default),
ap (create an access point to which other devices can connect),
and adhoc (peer to peer networks without a central access point).
ap is only supported with NetworkManager.

	bssid (scalar) – since 0.99

If specified, directs the device to only associate with the given
access point.

	band (scalar) – since 0.99

Possible bands are 5GHz (for 5GHz 802.11a) and 2.4GHz
(for 2.4GHz 802.11), do not restrict the 802.11 frequency band of the
network if unset (the default).

	channel (scalar) – since 0.99

Wireless channel to use for the Wi-Fi connection. Because channel
numbers overlap between bands, this property takes effect only if
the band property is also set.

	hidden (bool) – since 0.100

Set to true to change the SSID scan technique for connecting to
hidden WiFi networks. Note this may have slower performance compared
to false (the default) when connecting to publicly broadcast
SSIDs.

	wakeonwlan (sequence of scalars) – since 0.99

This enables WakeOnWLan on supported devices. Not all drivers support all
options. May be any combination of any, disconnect, magic_pkt,
gtk_rekey_failure, eap_identity_req, four_way_handshake,
rfkill_release or tcp (NetworkManager only). Or the exclusive
default flag (the default).

	regulatory-domain (scalar) – since 0.105

This can be used to define the radio’s regulatory domain, to make use of
additional WiFi channels outside the “world domain”. Takes an ISO /
IEC 3166 country code (like GB) or 00 to reset to the “world domain”.
See wireless-regdb [https://git.kernel.org/pub/scm/linux/kernel/git/sforshee/wireless-regdb.git/tree/db.txt]
for available values.

Requires dependency: iw, if it is to be used outside the networkd
(wpa_supplicant) backend.

Properties for device type bridges:

	interfaces (sequence of scalars)

All devices matching this ID list will be added to the bridge. This may
be an empty list, in which case the bridge will be brought online with
no member interfaces.

Example:

ethernets:
 switchports:
 match: {name: "enp2*"}
[...]
bridges:
 br0:
 interfaces: [switchports]

	parameters (mapping)

Customization parameters for special bridging options. Time intervals
may need to be expressed as a number of seconds or milliseconds: the
default value type is specified below. If necessary, time intervals can
be qualified using a time suffix (such as “s” for seconds, “ms” for
milliseconds) to allow for more control over its behavior.

	ageing-time, aging-time (scalar)

Set the period of time to keep a MAC address in the forwarding
database after a packet is received. This maps to the AgeingTimeSec=
property when the networkd renderer is used. If no time suffix is
specified, the value will be interpreted as seconds.

	priority (scalar)

Set the priority value for the bridge. This value should be a
number between 0 and 65535. Lower values mean higher
priority. The bridge with the higher priority will be elected as
the root bridge.

	port-priority (scalar)

Set the port priority to . The priority value is
a number between 0 and 63. This metric is used in the
designated port and root port selection algorithms.nav.xhtml

 Table of Contents

 		
 Netplan Documentation

 		
 Reference

 		
 YAML configuration

 		
 Introduction

 		
 General structure

 		
 Device configuration IDs

 		
 Common properties for physical device types

 		
 Common properties for all device types

 		
 DHCP Overrides

 		
 Routing

 		
 Authentication

 		
 Properties for device type ethernets:

 		
 Properties for device type modems:

 		
 Properties for device type wifis:

 		
 Properties for device type bridges:

 		
 Properties for device type bonds:

 		
 Properties for device type tunnels:

 		
 Properties for device type vlans:

 		
 Properties for device type vrfs:

 		
 Properties for device type nm-devices:

 		
 Backend-specific configuration parameters

 		
 API specification

 		
 How-to guides

 		
 Examples

 		
 Using DHCP and static addressing

 		
 Connecting multiple interfaces with DHCP

 		
 Connecting to an open wireless network

 		
 Connecting to a WPA Personal wireless network

 		
 Connecting to WPA Enterprise wireless networks

 		
 Using multiple addresses on a single interface

 		
 Using multiple addresses with multiple gateways

 		
 Using Network Manager as a renderer

 		
 Configuring interface bonding

 		
 Configuring network bridges

 		
 Attaching VLANs to network interfaces

 		
 Reaching a directly connected gateway

 		
 Configuring source routing

 		
 Configuring a loopback interface

 		
 Integration with a Windows DHCP Server

 		
 Connecting an IP tunnel

 		
 Configuring SR-IOV Virtual Functions

 		
 Complex example

